
Chapter 15

Ordinary Differential
Equations

Mathematical models in many different fields.

Systems of differential equations form the basis of mathematical models in a
wide range of fields – from engineering and physical sciences to finance and biological
sciences. Differential equations are relations between unknown functions and their
derivatives. Computing numerical solutions to differential equations is one of the
most important tasks in technical computing, and one of the strengths of Matlab.

If you have studied calculus, you have learned a kind of mechanical process for
differentiating functions represented by formulas involving powers, trig functions,
and the like. You know that the derivative of x3 is 3x2 and you may remember that
the derivative of tanx is 1 + tan2x. That kind of differentiation is important and
useful, but not our primary focus here. We are interested in situations where the
functions are not known and cannot be represented by simple formulas. We will
compute numerical approximations to the values of a function at enough points to
print a table or plot a graph.

Imagine you are traveling on a mountain road. Your altitude varies as you
travel. The altitude can be regarded as a function of time, or as a function of longi-
tude and latitude, or as a function of the distance you have traveled. Let’s consider
the latter. Let x denote the distance traveled and y = y(x) denote the altitude. If
you happen to be carrying an altimeter with you, or you have a deluxe GPS system,
you can collect enough values to plot a graph of altitude versus distance, like the
first plot in figure 15.1.

Suppose you see a sign saying that you are on a 6% uphill grade. For some

Copyright c⃝ 2011 Cleve Moler
MatlabR⃝ is a registered trademark of MathWorks, Inc.TM

October 4, 2011

199



200 Chapter 15. Ordinary Differential Equations

6000 6010 6020 6030 6040 6050 6060 6070
950

1000

1050

1100

1150

al
tit

ud
e

6000 6010 6020 6030 6040 6050 6060 6070
−20

−10

0

10

20
sl

op
e

distance

Figure 15.1. Altitude along a mountain road, and derivative of that alti-
tude. The derivative is zero at the local maxima and minima of the altitude.

value of x near the sign, and for h = 100, you will have

y(x+ h)− y(x)

h
= .06

The quotient on the left is the slope of the road between x and x+ h.
Now imagine that you had signs every few meters telling you the grade at

those points. These signs would provide approximate values of the rate of change
of altitude with respect to distance traveled, This is the derivative dy/dx. You
could plot a graph of dy/dx, like the second plot in figure 15.1, even though you do
not have closed-form formulas for either the altitude or its derivative. This is how
Matlab solves differential equations. Note that the derivative is positive where the
altitude is increasing, negative where it is decreasing, zero at the local maxima and
minima, and near zero on the flat stretches.

Here is a simple example illustrating the numerical solution of a system of
differential equations. Figure 15.2 is a screen shot from Spacewar, the world’s
first video game. Spacewar was written by Steve “Slug” Russell and some of his
buddies at MIT in 1962. It ran on the PDP-1, Digital Equipment Corporation’s
first computer. Two space ships, controlled by players using switches on the PDP-1
console, shoot space torpedoes at each other.

The space ships and the torpedoes orbit around a central star. Russell’s
program needed to compute circular and elliptical orbits, like the path of the torpedo
in the screen shot. At the time, there was no Matlab. Programs were written in
terms of individual machine instructions. Floating-point arithmetic was so slow
that it was desirable to avoid evaluation of trig functions in the orbit calculations.
The orbit-generating program looked something like this.

x = 0

y = 32768



201

Figure 15.2. Spacewar, the world’s first video game. The gravitational
pull of the central star causes the torpedo to move in an elliptical orbit.

L: plot x y

load y

shift right 2

add x

store in x

change sign

shift right 2

add y

store in y

go to L

What does this program do? There are no trig functions, no square roots, no
multiplications or divisions. Everything is done with shifts and additions. The
initial value of y, which is 215, serves as an overall scale factor. All the arithmetic
involves a single integer register. The “shift right 2” command takes the contents
of this register, divides it by 22 = 4, and discards any remainder.

If Spacewar orbit generator were written today in Matlab, it would look
something the following. We are no longer limited to integer values, so we have
changed the scale factor from 215 to 1.

x = 0;

y = 1;

h = 1/4;

n = 2*pi/h;

plot(x,y,’.’)

for k = 1:n



202 Chapter 15. Ordinary Differential Equations

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 15.3. The 25 blue points are generated by the Spacewar orbit gen-
erator with a step size of 1/4. The 201 green points are generated with a step size
of 1/32.

x = x + h*y;

y = y - h*x;

plot(x,y,’.’)

end

The output produced by this program with h = 1/4 and n = 25 is shown by the
blue dots in figure 15.3. The blue orbit is actually an ellipse that deviates from
an exact circle by about 7%. The output produced with h = 1/32 and n = 201 is
shown by the green dots. The green orbit is another ellipse that deviates from an
exact circle by less than 1%.

Think of x and y as functions of time, t. We are computing x(t) and y(t) at
discrete values of t, incremented by the step size h. The values of x and y at time
t+ h are computed from the values at time t by

x(t+ h) = x(t) + hy(t)

y(t+ h) = y(t)− hx(t+ h)

This can be rewritten as

x(t+ h)− x(t)

h
= y(t)

y(t+ h)− y(t)

h
= −x(t+ h)

You have probably noticed that the right hand side of this pair of equations involves



203

two different values of the time variable, t and t + h. That fact turns out to be
important, but let’s ignore it for now.

Look at the left hand sides of the last pair of equations. The quotients are
approximations to the derivatives of x(t) and y(t). We are looking for two functions
with the property that the derivative of the first function is equal to the second and
the derivative of the second function is equal to the negative of the first.

In effect, the Spacewar orbit generator is using a simple numerical method
involving a step size h to compute an approximate solution to the system of differ-
ential equations

ẋ = y

ẏ = −x

The dot over x and y denotes differentiation with respect to t.

ẋ =
dx

dt

The initial values of x and y provide the initial conditions

x(0) = 0

y(0) = 1

The exact solution to the system is

x(t) = sin t

y(t) = cos t

To see why, recall the trig identities

sin (t+ h) = sin t cosh+ cos t sinh

cos (t+ h) = cos t cosh− sin t sinh

For small values of h,

sinh ≈ h,

cosh ≈ 1

Consequently

sin (t+ h)− sin t

h
≈ cos t,

cos (t+ h)− cos t

h
≈ − sin t,

If you plot x(t) and y(t) as functions of t, you get the familiar plots of sine
and cosine. But if you make a phase plane plot, that is y(t) versus x(t), you get a
circle of radius 1.

It turns out that the solution computed by the Spacewar orbit generator with
a fixed step size h is an ellipse, not an exact circle. Decreasing h and taking more



204 Chapter 15. Ordinary Differential Equations

steps generates a better approximation to a circle. Actually, the fact that x(t+ h)
is used instead of x(t) in the second half of the step means that the method is not
quite as simple as it might seem. This subtle change is responsible for the fact that
the method generates ellipses instead of spirals. One of the exercises asks you to
verify this fact experimentally.

Mathematical models involving systems of ordinary differential equations have
one independent variable and one or more dependent variables. The independent
variable is usually time and is denoted by t. In this book, we will assemble all the
dependent variables into a single vector y. This is sometimes referred to as the state
of the system. The state can include quantities like position, velocity, temperature,
concentration, and price.

In Matlab a system of odes takes the form

ẏ = F (t, y)

The function F always takes two arguments, the scalar independent variable, t,
and the vector of dependent variables, y. A program that evaluates F (t, y) hould
compute the derivatives of all the state variables and return them in another vector.

In our circle generating example, the state is simply the coordinates of the
point. This requires a change of notation. We have been using x(t) and y(t) to
denote position, now we are going to use y1(t) and y2(t). The function F defines
the velocity.

ẏ(t) =

(
ẏ1(t)
ẏ2(t)

)
=

(
y2(t)

−y1(t)

)
Matlab has several functions that compute numerical approximations to solu-

tions of systems of ordinary differential equations. The suite of ode solvers includes
ode23, ode45, ode113, ode23s, ode15s, ode23t, and ode23tb. The digits in the
names refer to the order of the underlying algorithms. The order is related to the
complexity and accuracy of the method. All of the functions automatically deter-
mine the step size required to obtain a prescribed accuracy. Higher order methods
require more work per step, but can take larger steps. For example ode23 compares
a second order method with a third order method to estimate the step size, while
ode45 compares a fourth order method with a fifth order method.

The letter “s” in the name of some of the ode functions indicates a stiff solver.
These methods solve a matrix equation at each step, so they do more work per step
than the nonstiff methods. But they can take much larger steps for problems where
numerical stability limits the step size, so they can be more efficient overall.

You can use ode23 for most of the exercises in this book, but if you are
interested in the seeing how the other methods behave, please experiment.

All of the functions in the ode suite take at least three input arguments.

• F, the function defining the differential equations,

• tspan, the vector specifying the integration interval,



205

0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 15.4. Graphs of sine and cosine generated by ode23.

• y0, the vector of initial conditions.

There are several ways to write the function describing the differential equa-
tion. Anticipating more complicated functions, we can create a Matlab program
for our circle generator that extracts the two dependent variables from the state
vector. Save this in a file named mycircle.m.

function ydot = mycircle(t,y)

ydot = [y(2); -y(1)];

Notice that this function has two input arguments, t and y, even though the output
in this example does not depend upon t.

With this function definition stored in mycircle.m, the following code calls
ode23 to compute the solution over the interval 0 ≤ t ≤ 2π, starting with x(0) = 0
and y(0) = 1.

tspan = [0 2*pi];

y0 = [0; 1];

ode23(@mycircle,tspan,y0)

With no output arguments, the ode solvers automatically plot the solutions.
Figure 15.4 is the result for our example. The small circles in the plot are not
equally spaced. They show the points chosen by the step size algorithm.

To produce the phase plot plot shown in figure 15.5, capture the output and
plot it yourself.

tspan = [0 2*pi];

y0 = [0; 1];

[t,y] = ode23(@mycircle,tspan,y0)

plot(y(:,1),y(:,2)’-o’)



206 Chapter 15. Ordinary Differential Equations

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 15.5. Graph of a circle generated by ode23.

axis([-1.1 1.1 -1.1 1.1])

axis square

The circle generator example is so simple that we can bypass the creation of
the function file mycircle.m and write the function in one line.

acircle = @(t,y) [y(2); -y(1)]

The expression created on the right by the “@” symbol is known as an anonymous
function because it does not have a name until it is assigned to acircle. Since the
“@” sign is included in the definition of acircle, you don’t need it when you call
an ode solver.

Once acircle has been defined, the statement

ode23(acircle,tspan,y0)

automatically produces figure 15.4. And, the statement

[t,y] = ode23(acircle,tspan,y0)

captures the output so you can process it yourself.
Many additional options for the ode solvers can be set via the function odeset.

For example

opts = odeset(’outputfcn’,@odephas2)

ode23(acircle,tspan,y0,opts)

axis square

axis([-1.1 1.1 -1.1 1.1])



207

will also produce figure 15.5.
Use the command

doc ode23

to see more details about the Matlab suite of ode solvers. Consult the ODE
chapter in our companion book, Numerical Computing with MATLAB, for more of
the mathematical background of the ode algorithms, and for ode23tx, a textbook
version of ode23.

Here is a very simple example that illustrates how the functions in the ode suite
work. We call it “ode1” because it uses only one elementary first order algorithm,
known as Euler’s method. The function does not employ two different algorithms
to estimate the error and determine the step size. The step size h is obtained by
dividing the integration interval into 200 equal sized pieces. This would appear to
be appropriate if we just want to plot the solution on a computer screen with a
typical resolution, but we have no idea of the actual accuracy of the result.

function [t,y] = ode1(F,tspan,y0)

% ODE1 World’s simplest ODE solver.

% ODE1(F,[t0,tfinal],y0) uses Euler’s method to solve

% dy/dt = F(t,y)

% with y(t0) = y0 on the interval t0 <= t <= tfinal.

t0 = tspan(1);

tfinal = tspan(end);

h = (tfinal - t0)/200;

y = y0;

for t = t0:h:tfinal

ydot = F(t,y);

y = y + h*ydot;

end

However, even with 200 steps this elementary first order method does not have
satisfactory accuracy. The output from

[t,y]] = ode1(acircle,tspan,y0)

is

t =

6.283185307179587

y =

0.032392920185564

1.103746317465277

We can see that the final value of t is 2*pi, but the final value of y has missed
returning to its starting value by more than 10 percent. Many more smaller steps
would be required to get graphical accuracy.



208 Chapter 15. Ordinary Differential Equations

Recap
%% Ordinary Differential Equations Chapter Recap

% This is an executable program that illustrates the statements

% introduced in the Ordinary Differential Equations Chapter

% of "Experiments in MATLAB".

% You can access it with

%

% odes_recap

% edit odes_recap

% publish odes_recap

%

% Related EXM programs

%

% ode1

%% Spacewar Orbit Generator.

x = 0;

y = 1;

h = 1/4;

n = 2*pi/h;

plot(x,y,’.’)

hold on

for k = 1:n

x = x + h*y;

y = y - h*x;

plot(x,y,’.’)

end

hold off

axis square

axis([-1.1 1.1 -1.1 1.1])

%% An Anonymous Function.

acircle = @(t,y) [y(2); -y(1)];

%% ODE23 Automatic Plotting.

figure

tspan = [0 2*pi];

y0 = [0; 1];

ode23(acircle,tspan,y0)

%% Phase Plot.

figure

tspan = [0 2*pi];

y0 = [0; 1];

[t,y] = ode23(acircle,tspan,y0)



209

plot(y(:,1),y(:,2),’-o’)

axis square

axis([-1.1 1.1 -1.1 1.1])

%% ODE23 Automatic Phase Plot.

opts = odeset(’outputfcn’,@odephas2)

ode23(acircle,tspan,y0,opts)

axis square

axis([-1.1 1.1 -1.1 1.1])

%% ODE1 implements Euler’s method.

% ODE1 illustrates the structure of the MATLAB ODE solvers,

% but it is low order and employs a coarse step size.

% So, even though the exact solution is periodic, the final value

% returned by ODE1 misses the initial value by a substantial amount.

type ode1

[t,y] = ode1(acircle,tspan,y0)

err = y - y0

Exercises

15.1 Walking to class. You leave home (or your dorm room) at the usual time in the
morning and walk toward your first class. About half way to class, you realize that
you have forgotten your homework. You run back home, get your homework, run
to class, and arrive at your usual time. Sketch a rough graph by hand showing your
distance from home as a function of time. Make a second sketch of your velocity
as a function of time. You do not have to assume that your walking and running
velocities are constant, or that your reversals of direction are instantaneous.

15.2 Divided differences. Create your own graphic like our figure 15.1. Make up
your own data, x and y, for distance and altitude. You can use

subplot(2,1,1)

and

subplot(2,1,2)

to place two plots in one figure window. The statement

d = diff(y)./diff(x)

computes the divided difference approximation to the derivative for use in the second
subplot. The length of the vector d is one less than the length of x and y, so you
can add one more value at the end with



210 Chapter 15. Ordinary Differential Equations

d(end+1) = d(end)

For more information about diff and subplot, use

help diff

help subplot

15.3 Orbit generator. Here is a complete Matlab program for the orbit generator,
including appropriate setting of the graphics parameters. Investigate the behavior
of this program for various values of the step size h.

axis(1.2*[-1 1 -1 1])

axis square

box on

hold on

x = 0;

y = 1;

h = ...

n = 2*pi/h;

plot(x,y,’.’)

for k = 1:n

x = x + h*y;

y = y - h*x;

plot(x,y,’.’)

end

15.4 Modified orbit generator. Here is a Matlab program that makes a simpler
approximation for the orbit generator. What does it do? Investigate the behavior
for various values of the step size h.

axis(1.5*[-1 1 -1 1])

axis square

box on

hold on

x = 0;

y = 1;

h = 1/32;

n = 6*pi/h;

plot(x,y,’.’)

for k = 1:n

savex = x;

x = x + h*y

y = y - h*savex;

plot(x,y,’.’)

end



211

15.5 Linear system Write the system of differential equations

ẏ1 = y2

ẏ2 = −y1

in matrix-vector form,

ẏ = Ay

where y is a vector-valued function of time,

y(t) =

(
y1(t)
y2(t)

)
and A is a constant 2-by-2 matrix. Use our ode1 as well as ode23 to experiment
with the numerical solution of the system in this form.

15.6 Example from ode23. The first example in the documentation for ode23 is

ẏ1 = y2 y3

ẏ2 = −y1 y3

ẏ3 = −0.51 y1 y2

with initial conditions

y1(0) = 0

y2(0) = 1

y3(0) = 1

Compute the solution to this system on the interval 0 ≤ t ≤ 12. Reproduce the
graph included in the documentation provided by the command

doc ode23

15.7 A cubic system. Make a phase plane plot of the solution to the ode system

ẏ1 = y32

ẏ2 = −y31

with initial conditions

y1(0) = 0

y2(0) = 1

on the interval

0 ≤ t ≤ 7.4163

What is special about the final value, t = 7.4163?



212 Chapter 15. Ordinary Differential Equations

15.8 A quintic system. Make a phase plane plot of the solution to the ode system

ẏ1 = y52

ẏ2 = −y51

with initial conditions

y1(0) = 0

y2(0) = 1

on an interval

0 ≤ t ≤ T

where T is the value between 7 and 8 determined by the periodicity condition

y1(T ) = 0

y2(T ) = 1

15.9 A quadratic system. What happens to solutions of

ẏ1 = y22

ẏ2 = −y21

Why do solutions of

ẏ1 = yp2
ẏ2 = −yp1

have such different behavior if p is odd or even?


